Molecular recognition on acoustic wave devices: zeolite thin films coated with organosilane gate layers
نویسندگان
چکیده
Microporous thin films composed of a molecular coupling layer, zeolite crystals, and a porous silica overlayer, were formed on the gold electrodes of quartz crystal microbalances (QCMs). The silica overlayer enhances the mechanical stability of the zeolite films, and results in additional surface area and porosity as characterized by the sorption isotherms and transient sorption of vapors with different molecular diameters and different polarities. The protecting silica glass layer is gas permeable such that the regular zeolite micropores with molecular sieving capability are still accessible in the composite film. A novel surface tailoring technique for the microporous thin films was developed, in which organosilane molecules were chemisorbed on the silica overlayer via siloxane linkages, forming a molecular "gate" at the gas thin film interface. The adsorption of vapors into the microporous zeolite films is therefore controlled by the permeability of the gate layer. Selective adsorption based on kinetic or equilibrium exclusion from the microporous films could be achieved, as demonstrated by discrimination of molecules with similar polarity but different molecular diameters (water vs. ethanol), and effective exclusion of larger molecules such as rt-hexane. As a result of the increase in the vapor sorption selectivity and reduction of the external surface area of the thin films, the modified QCMs show high selectivity towards water over other molecules.
منابع مشابه
Preparation and Characterization of Aluminum Nitride Thin Films with the Potential Application in Electro-Acoustic Devices
In this work, aluminum nitride (AlN) thin films with different thicknesses were deposited on quartz and silicon substrates using single ion beam sputtering technique. The physical and chemical properties of prepared films were investigated by different characterization technique. X-ray diffraction (XRD) spectra revealed that all of the deposited films have an amorphous str...
متن کاملMolecular Recognition in Gas Sensing: Results from Acoustic Wave and In-situ Ftir Measurements
Surface acoustic wave (SAW) measurements were combined with direct, in-situ molecular spectroscopy to understand the interactions of surface-confined sensing films with gas-phase analytes. This was accomplished by collecting Fourier-transform infrared external-reflectance spectra (FTIR-ERS) on operating SAW devices during dosing of their specifically coated surfaces with key analytes.
متن کاملEffects of AlN Coating Layer on High Temperature Characteristics of Langasite SAW Sensors
High temperature characteristics of langasite surface acoustic wave (SAW) devices coated with an AlN thin film have been investigated in this work. The AlN films were deposited on the prepared SAW devices by mid-frequency magnetron sputtering. The SAW devices coated with AlN films were measured from room temperature to 600 °C. The results show that the SAW devices can work up to 600 °C. The AlN...
متن کاملEnhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates
Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...
متن کاملFabrication of MgF2-SiO2 Nanocomposite Thin Films and Investigation of Their Optical and Hydrophobic Properties
In this research, MgF2-2%SiO2/MgF2 thin films were applied on a glass substrate. At first, MgF2 thin films with the optical thickness were deposited on the glass slide substrates. Then, MgF2-2%SiO2 thin films were deposited on the glass coated with MgF2 thin films. Finally, the nanocomposite thin films were surface treated by the PFTS solution. Characterization of the thin film was done by X-Ra...
متن کامل